skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moise, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundJoint acoustic emissions from knees have been evaluated as a convenient, non-invasive digital biomarker of inflammatory knee involvement in a small cohort of children with Juvenile Idiopathic Arthritis (JIA). The objective of the present study was to validate this in a larger cohort. FindingsA total of 116 subjects (86 JIA and 30 healthy controls) participated in this study. Of the 86 subjects with JIA, 43 subjects had active knee involvement at the time of study. Joint acoustic emissions were bilaterally recorded, and corresponding signal features were used to train a machine learning algorithm (XGBoost) to classify JIA and healthy knees. All active JIA knees and 80% of the controls were used as training data set, while the remaining knees were used as testing data set. Leave-one-leg-out cross-validation was used for validation on the training data set. Validation on the training and testing set of the classifier resulted in an accuracy of 81.1% and 87.7% respectively. Sensitivity / specificity for the training and testing validation was 88.6% / 72.3% and 88.1% / 83.3%, respectively. The area under the curve of the receiver operating characteristic curve was 0.81 for the developed classifier. The distributions of the joint scores of the active and inactive knees were significantly different. ConclusionJoint acoustic emissions can serve as an inexpensive and easy-to-use digital biomarker to distinguish JIA from healthy controls. Utilizing serial joint acoustic emission recordings can potentially help monitor disease activity in JIA affected joints to enable timely changes in therapy. 
    more » « less